Dalam kehidupan sehari-hari kita tidak bisa lepas dari persamaan linear. Apabila kita belanja di pasar dan dari sekumpulan barang belanjaan kita mendapatkan suatu harga tertentu, secara tidak langsung kita bersentuhan dengan persamaan linear. Atau, saat kita sedang menikmati makan siang di sebuah restoran cepat saji, dan di sana ditawarkan beberapa paket makanan yang merupakan kombinasi dari beberapa jenis makanan. Setiap paket pasti memiliki harga tertentu dan kita tidak tahu berapa harga untuk masing-masing makanan yang menyusun paket makanan tersebut. Sekali lagi, inipun sebenarnya adalah permasalahan persamaan linear.
Kasus yang lain seperti iklan paket hemat cetak brosur full colour di atas. Di iklan tersebut dikatakan dengan Rp750.000,- kita dapat mencetak 2000 lembar brosur A4 cetak 1 muka atau 4000 lembar ½ A4 cetak 1 muka. Jika satu lembar A4 kita misalkan x dan cetak satu muka kita misalkan y, maka kita akan mendapatkan persamaan 750.000 = 2000(x + y) atau 750.000 = 4000 (½x + y)
Contoh-contoh di atas adalah penggunaan persamaan linear dalam kehidupan sehari-hari. Apakah ada contoh penggunaan sistem persamaan linear dalam bidang lain? Ada. Kamu tentu pernah belajar tentang temperatur. Ada tiga skala yang kita kenal, Cecius, Reamur, dan Fahrenheit. Untuk mendapatkan rumus yang menghubungkan Celcius dengan Fahrenheit, kita tinggal menyatakan temperatur Fahrenheit = m temperatur Celcius + n atau F = mC + n dengan m dan n adalah konstanta. Pada tekanan satu atmosfer titik didih air adalah 212 derajat F atau 100 derajat F atau 0 derajat C.°derajat C dan titik beku air adalah 32 Dengan memasukkan kedua nilai tersebut ke dalam persamaan F = mC + n maka diperoleh m = 9/5 dan n = 32. Itulah sebabnya kita mendapatkan hubungan F = 9/5C + 32
Pertidaksamaan Linear
Pertidaksamaan linear dapat digunakan untuk memecahkan masalah dalam kehidupan sehari-hari. Hal ini dapat dilakukan dengan memodelkan masalah tersebut ke dalam model matematika. Sebagai contoh perhatikan permasalahan berikut ini.
Pak Budi adalah seorang pedagang roti. Beliau menjual roti menggunakan gerobak yang hanya dapat memuat 600 roti. Roti yang dijualnya adalah roti manis dan roti tawar dengan harga masing-masing adalah Rp 5.500,00 dan Rp 4.500,00 per bungkusnya. Dari penjualan roti ini, beliau memperoleh keuntungan Rp 500,00 dari sebungkus roti manis dan Rp 600,00 dari sebungkus roti tawar. Apabila modal yang dimiliki oleh Pak Budi adalah Rp 600.000, buatlah model matematika dengan tujuan untuk memperoleh keuntungan sebesar-besarnya!
Permasalah di atas dapat dimodelkan dalam bentuk matematika dengan menggunakan sistem pertidaksamaan linear dua variabel. Dengan memisalkan banyaknya roti manis dan roti tawar secara berturut-turut sebagai x dan y, maka diperoleh tabel sebagai berikut.
Sehingga apabila dituliskan dalam bentuk sistem pertidaksamaan akan menjadi seperti berikut ini.
x + y ≤ 600,
5.500x + 4.500y ≤ 600.000,
Untuk x, y anggota bilangan cacah, x ≥ 0, y ≥ 0
Dua pertidaksamaan yang terakhir (baris ketiga) menunjukkan syarat dari nilai x dan y. Karena x dan y secara berturut-turut menyatakan banyaknya roti, maka tidak mungkin nilai x dan y bernilai negatif.
Perhatikan kolom keempat dari tabel di atas. Kolom keempat tersebut menyatakan fungsi yang akan ditentukan nilai maksimumnya (nilai optimum). Fungsi tersebut dapat dituliskan dalam persamaan matematika sebagai berikut.
f(x,y) = 500x + 600y
Tujuan dari permasalahan ini adalah mencari nilai x dan y yang menjadi anggota himpunan penyelesaian dari sistem pertidaksamaan, serta membut fungsi f(x,y) = 500x + 600y bernilai optimum (maksimum).
Ya, kita telah berhasil merumuskan masalah di atas ke dalam suatu model matematika. Dari ilustrasi di atas, dapatkah kalian menyimpulkan pengertian dari model matematika?
Model matematika adalah suatu cara sederhana untuk menerjemahkan suatu masalah ke dalam bahasa matematika dengan menggunakan persamaan, pertidaksamaan, atau fungsi.
Tidak ada komentar:
Posting Komentar